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ABSTRACT

We begin by summarising a conventional view of
SchridingerOfEquation. Questions are asked and this
view is criticised. There follows a mathematica
experiment wherein an hierarchy of identities is
gquantized. These identities apply to arbitrary,
differentiable functions of the coordinates that are
themselves differentiable functions of time; such
functions appear in classical dynamics. It turns out
tha the quantizations are not identities unless we
restrict the form of the Hamiltonian operator. The
Schrsdinger and Dirac forms satisfy whereas
arbitrary choices do not. The Dirac form is a better
approximation in tha it satisfies highe level
identities than the SchrSdinger form.
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1. The Schrodinger Equation

(1) H¢:ih%; h = (PlankOsongant) /(27)

where t istime (treated as a scalar that commutes with all
opeaators), ¢ represents thestate and H istheenergy operator;

H isusudly taken to have the same structure as the
Hamiltonian of the correspondng classical modd (if thereis

one.
2) 1" 1(g0

Is taken to be a complex, nomed, continuous, differentiable
function of the (scalar) coordnates

) 9=149:-9,>-9,}

andis defined on an Hilbert space with the ¢ as arguments;, ¢ is
treated as alabd.
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1.1 The Eigenvalue Equation

Thefirst step, in finding an eigenvalue £ of H with
eigenfunction ¢, isto note that

(5) H¢ = ih%—‘f = E¢p = ¢ =y (q)exp(~itE'/ h)

where the eigenfunction y (¢) satisfies

(6) H! =E!; asosometimes called SchridingerOs
eguation

To make further progress we need to specify H asan
opeator function of other operatorswith known properties.
Typically, when dealing with a particle or system of particles,
the operator arguments are the coordinaes O andtheir

conjugate momenta P with the correspondence (from classical
scalars to operators)

(1) p=P 04=Q
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1.2 The Original Problem

The origind Schrsdinger problem (the hydrogen atom)
congders the Hamiltonian operator

(9) HEﬁEPfH/(Q); n=23; m isthescalar mass
=l

with representations

! : :
(10) Q, #q,l; P # th; I istheunit operator
"1

which correspondsto a single Newtonian particlein ascalar
field V(q) . Here the coordinates are Cartesian; and the

representation (10) is suitable only to such coordinates.
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2. Criticisms
2.1 Standard Explanations

By integrating NewtonOsaws, in the context of EuclidOs
geometry, we arrive at Hamiltonian mechanics; and (9) is
simply the opeaator form of an important Hamiltonian. Whether
or notthe eigenvalue problem (6) turns out to be useful in QM
is amatter for theory and experiment. Another form for the
Hamiltonian is obtained from SR (special relativity) mechanics;
here EuclidOgieometry and NewtonOsuniversal time are
replaced by EinsteinOspace-time. The correspondng
eigenvalue equation (6) is DiracOsquation.
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2.2 Objections

These OandardGexplanations, for the importance of
certain Hamiltonian forms, seem to me to be unsatisfactory; we
need a deepe ingght

* The efficacy of NewtonOs$aws is profoundly mysterious
* On the face of it, there is no obvious reason why only some

modds work both, in the large, as abasis for CM and, in the
small, as a basis for QM.

* The structure of space-time, which we all take for granted, is
just as mysterious as NewtonOs$aws!
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3. The Identities
3.1 The First Three

Let 6(q) beany real, continuous diff erentiable function

tha does not depend explicitly on t. Then, by regarding the
coordinaes q as diff erentiable functions of time, we have

(11) #=q'#,; #," T Eingtein summation convention
- q
in force

where suffices on the coordinates have been raised to implement
the summation convention. Theidentity (11) can be

diff erentiated, with respect to time, to give further Oigher levelO
identities. Thus

S ik
(12) 60=4'0,+4'q°0 ,,

(13) GB-GRO  +3BEO,, +HELLKO
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3.2 0(q) Interpreted as Classical

Because the ¢ are taken to be functions of t we can
interpret these differential identities as equaionsin classical
mechanics. If (11), (12) and (13) are equaionsin CM then / (q)
must beavariable within a system and, as such, has aphysca
meaning; but, if we are not prepared to specify either which
system or which variable, then 6(q) is, for mog intents and

purposes, arbitrary. That thesystem is classical is congstent
with our assertion that both the g(¢)and 6(g) are differentiable.
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4. Quantization of the First Level Identity (11)
4.1 Correspondences

Suppos, first, tha we choose 6(q) to bearbitrary within

its class; and suppose, second, that we attempt to Ogantize(Yi.e.,
provide an operator form for) the classical equation (11)
according to theusud QM recipes. The correspondence between
classical variables and quantum operatorsis:

(15) a— A f(a)—F(A); a—A
where £ is defined by

. 04
16 UL ‘see(4) ;. —=0; null operator

(20) oaa+ pb—=adAd+ B, ab— (AB+BA)/2; o,p ae
real scalar congants

s #l AP P A A a(p.g)$ AP.O)
7T g e R B
an .. . "A
—(A4Q' #OA)! — 1 4/
llpj $ h( Q Q ) "I)j

where the PD notation suggests the algorithm required to
perform calculations
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4.2 The Operator Equation Corresponding to (11)

All the above operatorsare either Hermitian or self adjoint
(representing real observables). Notice that we have used the
Schrsdinger representation in which noneof the opeators
dependon t.

With the above definitionswe can express the operator
equation that correspondsto (11):

. ] . .
(21) © =Z(H®—®H) = (H'©,+0 HY)
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5. The Quantization Restricts H But Allows the
Schrodinger Form (9)

Because thefunction / (¢) is arbitrary so is the operator
O(Q). Therefore, because (11)is an identity that holdsfor
arbitrary ! (¢), (21) shoud also be an identity that holdsfor
arbitrary ! (Q); but, asitturnsout, (21)is an identity only for
certain forms of H . For example suppose that

(22) H" P’; ! =1 (0)

then (21) becomes

m_0- voglop g opy
27) ! ™=0; /$h(P #" P) o

which is not truefor arbitrary ©. So theform (22) is disallowed.
But, the forms

(28) H=P: H=P*and(9)

satisfy (21).
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6. Quantization of the Second Level Identity (12)-
The Schrodinger Form (9) is an Approximation

We may use the rules of Section 5 to quantize the second
level identity (12). We obtain

(33)
O = %[H(H@ _OH) - (HO - OH)H]
+[(H'H*+H*"H" )0, +0 (H'H* +H*H")]/4

Thefirst of the choices (28) satisfies (33) exactly; but,
when we subditute (9), (33) gives

hz mn
2 I Jajkk = 0
.k

(34) #

Given that, for (9), n = 3 the operator equation (34) corresponds

to the scalar PDE

h2

2

(35) -V (V*6(g))=0

where, werecall, the ¢ are the Cartesian coordinaes of asingle

paticle.
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7. The Dirac Form (42) is Exact Up to Level Two

The solutions of (35) can approximate many functions, but
in no sense are they arbitrary. So, except for alimited class of
opeators! (Q), (9) does notsatisfy (33). The question arises:

can we modify (9) so asstill to satisfy (21) while, at the same
time, eliminating the error term (see the LHS of (34))?

The Hamiltonian (9) is alow momentum approximation to a
classical relativistic Hamiltonian given by

3
(38) (H(p,)! V(g)’ =" ¢*p;+m’c"; c isthelight speed

j=1
Quantizing (38) and taking the square root of (41) in the manner
of Dirac

(42) H(P,Q)= !3 ¢" P +" mc’ +V(Q)

j=1
(429 o,0,+0,0,=20,1, a,f=0,123
wherethe ", are Hermitian opaatorsthat commute with both

the P andthe Q. H , defined by (42) and (42a), satisfies both
(21) and (33) exactly.
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8. The Dirac Form is Exact At Least Up to Level Three

A further calculation shows that, given thelinear form
(45) HE,Q!" ij +" +V(Q); Eingeninforce

and provided that the " ' (o’ =0; « =0,1,2,3) commute with
both the P andthe Q, (21) and (33) are always identities

whatever mutual commutationrules governthe o“. Buta
calculation at level three (i.e., beginning with (13)) shows that
we mug have

(46)

(0’0" +0*0o' =0’ (0’0" +o*0’)= (o)’ 0" =0"(07)*; VIjk
and

(47)

(c’c" +o0'0’)o =0(c’c" +o'0’)= (07)°0=0(c’)*; V jk
These condtions are satisfied by any set of operators ¢! and !

that satisfy (see (424)

(48) o0’ +0P0* =281, a,=0123, o’=0
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9. Conclusions
Two alternative views can be taken of these calculations

(@) The operator forms of the diff erential identities themselves
fail to beidentitiesfor all ©(Q) andall H because the

quantization recipeis at fault.

(b) Theinsstencetha ! (¢) isacontinuous, differential
function of the coordinates ¢ and, further, that the ¢ are
continuaus, differential functionsof thetime ¢ identifies 6(q),

although otherwise arbitrary, as belonging to a classical system.

The restrictions placed on H , to ensure that the opeator forms
remain identities for arbitrary ©(Q), thereforecharacterise

classical systems.
It is shown that the Schrsdinger form of H can only

approximate the higher level identities. The Dirac form is exact
at least upto level 3.

A. M. DEAKIN 12/8/199

A. M. Deakin, 75 Clatterford Rd, Newport, Isle of Wight, PO30 1NZ
E-Mail: anthony.deakin@baedsl.co.uk

16



POISSON BRACKET

*f

*

+

f(p.q)= +) *f

+) YOXH XS *H§,, (oH)
j ( p]

%- % ("9, %P, *P 4,8

# F" Z(HF! FH)

A. M. Deakin, 75 Clatterford Rd, Newport, Isle of Wight, PO30 1NZ 17
E-Mail: anthony.deakin@baedsl.co.uk



