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ABSTRACT 
 

 
We begin by summarising a conventional view of 
SchršdingerÕs Equation. Questions are asked and this 
view is criticised. There follows a mathematical 
experiment wherein an hierarchy of identities is 
quantized. These identities apply to arbitrary, 
differentiable functions of the coordinates that are 
themselves differentiable functions of time; such 
functions appear in  classical dynamics. It turns out 
that the quantizations  are not identities unless we 
restrict the form of the Hamiltonian operator. The 
Schršdinger and Dirac forms satisfy whereas 
arbitrary choices  do not. The Dirac form is a better 
approximation in that it satisfies higher level 
identities than the Schršdinger form. 
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1. The Schrödinger Equation 
 
  

(1)    !
"

"
= h

t
ihH ;

#
#  (PlankÕs constant) )2/( !  

 
where t  is time (treated as a scalar that commutes with all 
operators), !  represents the state and H  is the energy operator; 
H  is usually taken to have the same structure as the 
Hamiltonian of the corresponding classical model (if there is 
one). 
 
(2)    ),( tq!! "  
 
is taken to be a complex, normed, continuous , differentiable 
function of the (scalar) coordinates 
 
(3)    },....,{ 21 n

qqqq !  
 
and is defined on an Hilbert space with the q  as arguments; t  is 
treated as a label. 
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 1.1 The Eigenvalue Equation 
 

 The fi rst step, in finding an eigenvalue E  of  H  with 
eigenfunction ! , is to note that 
 

(5)    )/exp()( hitEqE
t

ihH !="=
#

#
= $%%

%
%  

 
where the eigenfunction )(q!  satisfies 
 
(6)    ;!! EH = also sometimes called SchršdingerÕs 
equation 
 

To make further progress we need to specify H  as an 
operator function of other operators with known properties. 
Typically, when dealing with a particle or system of particles, 
the operator arguments are the coordinates Q  and their 
conjugate momenta P  with the correspondence (from classical 
scalars to operators) 

 
(7)    QqPp !! ;  
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1.2 The Original Problem 
 

The original Schršdinger problem (the hydrogen atom) 
considers the Hamiltonian operator 
 

(9)    !
=

=+"
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j mnQVP
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2 ;3);(
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1
 is the scalar mass 

 
with representations 
 

(10)    I
q

ihPIqQ
j

jjj ;;
!
!

"##  is the unit operator 

 
which corresponds to a single Newtonian particle in a scalar 
field )(qV . Here the coordinates are Cartesian; and the 
representation (10) is suitable only to such coordinates. 
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2. Criticisms 
 
2.1 Standard Explanations 
 
 By integrating NewtonÕs laws, in the context of EuclidÕs 
geometry, we arrive at Hamiltonian mechanics; and (9) is 
simply the operator form of an important Hamiltonian. Whether 
or not the eigenvalue problem (6) turns out to be useful in QM  
is a matter for theory and experiment. Another form for the 
Hamiltonian is obtained from SR (special relativity) mechanics; 
here EuclidÕs geometry and NewtonÕs universal time are 
replaced by EinsteinÕs space-time. The corresponding 
eigenvalue equation (6) is DiracÕs equation. 
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2.2 Objections 
 

 These ÔstandardÕ explanations, for the importance of 
certain  Hamiltonian forms, seem to me to be unsatisfactory; we 
need a deeper insight. 
 
•  The eff icacy of NewtonÕs laws is profoundly mysterious. 
•  On the face of it, there is no obvious reason why only some 
models work both, in the large, as a basis for CM and, in the 
small, as a basis for QM. 
•  The structure of space-time, which we all take for granted, is 
just as mysterious as NewtonÕs laws! 
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3. The Identities 
 
3.1 The First Three 
 
 Let )(q!  be any real, continuous, differentiable function 
that does not depend explicitly on t . Then, by regarding the 
coordinates q  as differentiable functions of time, we have 
 

(11)    ;; ,, jjj

j

q
q

!
!

"=
#

### && Einstein summation convention 

in force 
 
where suffices on the coordinates have been raised to implement 
the summation convention. The identity (11) can be 
differentiated, with respect to time, to give further Ôhigher levelÕ 
identities. Thus 
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3.2 )(q!  Interpreted as Classical 
 

Because the q  are taken to be functions of t  we can 
interpret these differential identities as equations in  classical 
mechanics. If (11), (12) and (13) are equations in CM then )(q!  
must be a variable within a system and, as such, has a physical 
meaning; but, if we are not prepared to specify either which 
system or which variable, then )(q!  is , for most intents and 
purposes, arbitrary. That the system is classical is consistent 
with our assertion that both the )(tq and )(q!  are differentiable. 
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4. Quantization of the First Level Identity (11) 
 
4.1 Correspondences 
 

Suppose, fi rst, that we choose )(q!  to be arbitrary within 
its class; and suppose, second, that we attempt to ÔquantizeÕ (i.e., 
provide an operator form for) the classical equation (11) 
according to the usual QM recipes. The correspondence between 
classical variables and quantum operators is: 

 
(15)    AaAFafAa &&!!! );()(;  
 
where A& is defined by 
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where the PD notation suggests the algorithm required to 
perform calculations. 
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4.2 The Operator Equation Corresponding to (11) 
 
All the above operators are either Hermitian or self adjoint 
(representing real observables). Notice that we have used the 
Schršdinger representation in which none of the operators 
depend on t . 
 
 With the above definitions we can express the operator 
equation that corresponds to (11): 
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5. The Quantization Restricts H  But Allows the 
Schrödinger Form (9) 
 

Because the function )(q!  is arbitrary so is the operator 

)(Q! . Therefore, because (11) is an identity that holds for 

arbitrary )(q! , (21) should also be an identity that holds for 

arbitrary )(Q! ; but, as it turns out, (21) is an identity only for 
certain forms of H . For example suppose that 
 
(22)    )(;3 QPH !=!"  
 
then (21) becomes 
 

(27)    O=! """ ;   
Q

PP
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="#"$" % )(  

 
which is not true for arbitrary ! . So the form (22) is disallowed. 
But, the forms 
 
(28)    PH ! ;   2

PH !  and (9) 
 
satisfy (21). 
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6. Quantization of the Second Level Identity (12)- 
    The Schrödinger Form (9) is an Approximation 
 
 We may use the rules of Section 5 to quantize the second 
level identity (12). We obtain 
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The fi rst of the choices (28) satisfies (33) exactly; but, 
when we substitute (9), (33) gives 
 

(34)    ! ="#
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kkjj O
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Given that, for (9), 3=n  the operator equation (34) corresponds 
to the scalar PDE 
 

(35)    0))((
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where, we recall, the q  are the Cartesian coordinates of a single 
particle. 
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7. The Dirac Form (42) is Exact Up to Level Two 

 

The solutions of (35) can approximate many functions; but 
in no sense are they arbitrary. So, except for a limited class of 
operators )(Q! , (9) does not satisfy (33). The question arises: 
can we modify (9) so as still to satisfy (21) while, at the same 
time, eliminating the error term (see the LHS of (34))?  

 
The Hamiltonian (9) is a low momentum approximation to a 
classical relativistic Hamiltonian given by 
 

(38)    ccmpcqVqpH
j

j
;))(),(( 42

3

1

222
+=! "

=

 is the light speed  

Quantizing (38) and taking the square root of (41) in the manner 
of Dirac 
 

(42)    )(),( 2
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(42a)    3,2,1,0,;2 ==+ !"#$$$$ "!"!!" I  
 
where the !"  are Hermitian operators that commute with both 
the P  and the Q . H , defined by (42) and (42a), satisfies both 
(21) and (33) exactly. 
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8. The Dirac Form is Exact At Least Up to Level Three 
 
A further calculation shows that, given the linear form 

 
(45)    );(),( QVPQPH j

j
++! ""  Einstein in force 

 
and provided that the !"  ( 3,2,1,0;

0
=! "## ) commute with 

both the P  and the Q, (21) and (33) are always identities 

whatever mutual commutation rules govern the !" .  But a 
calculation at level three (i.e., beginning with (13)) shows that 
we must have 
 

(46)    
kjljkkjjkkjjljkkj ..;)()()()( 22
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and 
 
(47)    

kjjjjkkjjkkj .;)()()()( 22
!="+=+ ##############

 
 

These conditions are satisfied by any set of operators j!  and !  
that satisfy (see (42a) 
 
(48)    !!"#$!!!! #"#""# %==+

0;3,2,1,0,;2 I  
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9. Conclusions 
 
 Two alternative views can be taken of these calculations: 
 
(a)  The operator forms of the differential identities themselves 
fail to be identities for all )(Q!  and all H  because the 
quantization recipe is at fault. 
 
(b)  The insistence that )(q!  is a continuous, differential 

function of the coordinates q  and, further, that the q  are 
continuous, differential functions of the time t  identifies )(q! , 
although otherwise arbitrary, as belonging to a classical system. 
The restrictions placed on H , to ensure that the operator forms 
remain identities for arbitrary )(Q! , therefore characterise 
classical systems. 
 
 It is shown that the Schršdinger form of H  can only 
approximate the higher level identities. The Dirac form is exact 
at least up to level 3. 
 
 
  A. M. DEAKIN 12/8/1999 
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